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Abstract

This paper proposes a new WENO procedure to compute multi-scale problems with embedded discontinuities, on non-
uniform meshes.

In a one-dimensional context, the WENO procedure is first defined on a five-points stencil and designed to be fifth-order
accurate in regions of smoothness. To this end, we define a finite-volume discretization in which we consider the cell aver-
ages of the variable as the discrete unknowns. The reconstruction of their point-values is then ensured by a unique fifth-
order polynomial. This optimum polynomial is considered as a symmetric and convex combination, by ideal weights, of
four quadratic polynomials.

The symmetric nature of the resulting interpolation has an important consequence: the choice of ideal weights has no
influence on the accuracy of the discretization. This advantage enables to formulate the interpolation for non-uniform
meshes. Following the methodology of the classic WENO procedure, non-oscillatory weights are then calculated from
the ideal weights.

We adapt this procedure for the non-linear weights to maintain the theoretical convergence properties of the optimum
reconstruction, whatever the problem considered.

The resulting scheme is a fifth-order WENO method based on central interpolation and TVD Runge–Kutta time-inte-
gration. We call this scheme the CWENO5 scheme.

Numerical experiments in the scalar and the 1D Euler cases make it possible to check and to validate the options
selected. In those experiments, we emphasize the resolution power of the method by computing test cases that model real-
istic aero-acoustic problems. Finally, the new algorithm is directly extended to bi-dimensional problems.
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1. Introduction

Nowadays, high-order computational methods are highly demanded for solving problems in computational
fluid dynamics (CFD). For flow problems with intricate structures and a very broad range of characteristic
scales, high resolution is necessary for the structural information to be correctly extracted.

For example, in the direct numerical simulation (DNS) and the large eddy simulation (LES) of turbulence,
it is required that the numerical schemes be highly accurate. Computational aero-acoustics (CAA) is another
area where high-resolution schemes are required. Moreover, if the flow fields involve shock waves, these
schemes should also be non-oscillatory near the discontinuities without leading to an excessive damping of
the turbulent or acoustic fluctuations.

Weighted essentially non-oscillatory (WENO) schemes are one class of high-order numerical schemes. His-
torically, WENO schemes are based upon the successful essentially non-oscillatory (ENO) schemes that
started with the henceforth-classic paper of Harten et al. in 1987 [1].

WENO schemes improve upon ENO schemes in robustness, smoothness of the numerical fluxes, conver-
gence properties and computational efficiency. Owing to these advantages, a large variety of WENO schemes
was designed in recent years; see [2] for a good overview.

Nevertheless, in spite of a vast field of application, classical WENO schemes suffer from two genuine
drawbacks.

The essential idea in the WENO methodology is a linear combination of lower order reconstructions to
obtain a higher-order approximation. The combination coefficients, also called linear weights or ideal weights,
are obtained by local geometry of the mesh and order of accuracy. When the grid is uniform or is smoothly
varying, the linear weights remain positive. However, for general geometries that cannot be covered by a
Cartesian grid, these weights may become negative. Unfortunately, WENO procedures cannot be applied
directly to obtain a monotone scheme if negative linear weights are present [2].

This is the first significant drawback related to a procedure WENO.
A Previous strategy for handling this difficulty was to get rid of the negative linear weights by either

regrouping of stencils [4], or reducing the order of accuracy [5]. Another possible solution is to use a splitting
technique to treat the negative weights, without the necessity to get rid of them [3]. Even if they proved to be
efficient, these solutions complicate the resulting algorithm.

Although less significant, the second drawback of a WENO scheme is related to its actual rate of conver-
gence. Indeed, despite the high order convergence behaviour often exhibited by WENO schemes, their actual
rate of convergence is less than the optimum order for many problems [6,7]. To calculate the non-linear
weights that ensure the non-oscillatory properties of the scheme, a classical WENO procedure necessitates
specifying the magnitude of e, a small parameter initially designed to keep the weights bounded [2]. However,
e appears as a dimensional quantity in the formulation of the non-linear weights. Thus, e must be normally
selected on a case-by-case basis, which belies on the fact that e changes the order of convergence. This prop-
erty, combined with the level of grid resolution, has a dramatic effect on the convergence of WENO schemes
[6].

A strategy to circumvent this problem is to define an appropriate scaling [7], or to map the non-oscillatory
weights to values such that the optimal conditions on the weights are satisfied [6].

In this paper, we propose a new approach to effectively deal with these drawbacks without resorting to
complex strategies or limiting the generality of a WENO procedure.

In a finite-volume framework, we construct a fifth-order non-oscillatory scheme for solving 1D non-linear
hyperbolic systems of conservation laws. This scheme lies upon a central and local WENO interpolation: we
call this scheme the CWENO5 scheme.

To generate such a scheme, we use and extend the ideas of Levy et al. [8]. In their paper, the authors intro-
duced a new central weighted non-oscillatory (CWENO) reconstruction. This new reconstruction is based on
defining a suitable quadratic function that is added to linear polynomials to obtain third-order accuracy in
smooth regions. In regions with discontinuities or large gradients, the weights are changed automatically
and smoothly so that they switch to a one-sided second-order linear reconstruction. This reconstruction turns
out to be extremely compact; in the one-dimensional case, the reconstruction is based on a three-point stencil.
The main advantage of this procedure is that the choice of ideal weights has no influence on the properties of
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discretization. Any symmetric choice of the constants defining the ideal weights will provide the desired accu-
racy. This property must be contrasted with classical upwind WENO schemes.

To maintain this property and to generalize the WENO procedure to fifth-order accuracy on non-uniform
meshes, we develop a specific non-oscillatory fifth-order reconstruction based on a five-points stencil. For this
purpose, four polynomials are defined: three quadratic polynomials based on three-points stencils are first cal-
culated. These three-points stencils are extracted from the optimum five-points stencil. The fourth polynomial
is a second-order central polynomial based on the five-points stencil. This latter polynomial is calculated start-
ing from the difference between the optimum polynomial and the convex combination of the three second-
order polynomials previously calculated. The central polynomial is only necessary for the accurate recovery
of the point-values in regions of smoothness. When a discontinuity appears into the solution, this polynomial
is automatically removed by the procedure.

Thus, the optimum polynomial defined on the five-points stencil is considered as a linear and convex com-
bination, by ideal and symmetric weights, of these polynomials.

To end the description of the non-oscillatory reconstruction, the formulation of the non-linear weights is
specified.

To reduce the influence of the parameter e on the convergence properties of the scheme, we replace this
parameter by a new function that depends on the solution. This operation is accomplished by using the infor-
mation brought by the local smoothness indicators.

Comparing with the original scheme of Shu (UWENO5) [2], we can stress the following differences:

– The ideal weights are symmetric and free of the regularity of the mesh. Consequently, the scheme remains
monotone even on a non-uniform grid.

– The function that replaces the parameter e not only ensures the integrity of the non-oscillatory weights, but
is also designed to preserve the theoretical convergence properties of the reconstruction in regions of
smoothness.

This paper is organized as follows: we start in Section 2 by detailing the construction and implementation of
the CWENO5 scheme, for 1D scalar and 1D Euler equations. The reconstruction is defined on non-uniform
meshes; the specific procedure to generate a non-oscillatory reconstruction is then emphasized. The function
that replaces the parameter e is then detailed and discussed. In the case of a uniform mesh, we provide the
coefficients to calculate the interpolation.

In Section 3 we select numerical tests to validate the method. Asymptotic analysis stability is first managed
to check the influence of the boundary conditions, the stretching of the mesh and possible source terms. First,
the scheme is tested by computing solutions of scalar non-linear and 1D Euler equations. Emphasis is put on
the resolution power of the method by computing cases that model realistic aero-acoustic configurations.
Lastly, the new algorithm is naturally extended to bi-dimensional Cartesian problems and validated by solving
academic bi-dimensional Riemann problems.
2. Non-oscillatory reconstruction: the CWENO5 scheme

2.1. Governing equations

Let the following scalar non-linear hyperbolic problem be defined over the domain, X:
ut þ f ðuÞx ¼ 0 8x 2 X;

uðx; t ¼ 0Þ ¼ uoðxÞ:

�
ð1Þ
Defining the discrete cell Ii � [xi�1/2,xi+1/2], X is partitioned in N non-overlapping cells: X ¼
SN

i¼1I i. The non-
uniform cell size is calculated as Dxi � xi+1/2 � xi�1/2. Lastly, we define the discrete cell averages of u as
�ui � 1

Dxi

R
Ii

uðx; tÞdx.

Following the finite-volume methodology for generating an upwind scheme, the fluxes for u are approxi-
mated according to the classical formula:
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~f iþ1=2 ¼ f ðuL
iþ1=2Þ þ a�iþ1=2 � ðuR

iþ1=2 � uL
iþ1=2Þ

with : aiþ1=2 �
f ðuR

iþ1=2
Þ�f ðuL

iþ1=2
Þ

uR
iþ1=2

�uL
iþ1=2

if uR
iþ1=2 6¼ uL

iþ1=2

f 0ðuL
iþ1=2Þ otherwise

8<:
8>>><>>>: ð2Þ
In the numerical tests that we carried out, no entropy correction proved to be necessary.
Then, the discretization of the spatial operator generates an ODE in time for the discrete unknowns �ui. This

ODE is integrated by a third-order TVD Runge–Kutta scheme (TVD RK3) initially developed by Shu and
Osher [15].

2.2. Reconstruction from cell-averages, �ui

To begin, we select an optimal polynomial of degree 4, denoted by ~uoptðxÞ, on the central stencil
{Ii�2, Ii�1, Ii, Ii+1, Ii+2}, (see Fig. 1): ~uoptðxÞ �

P5
j¼1aj�1ðx� xiÞj�1.

Following [1], ~uoptðxÞ is uniquely defined by the relations:
1

Dxiþk

Z
I iþk

~uoptðxÞdx ¼ �uiþk; k 2 f�2;�1; 0; 1; 2g: ð3Þ
Thus, we generated a linear system for the undetermined coefficients {aj}.
This system can be re-written as
U ¼ C� A ð4Þ

with the following notations:
U � ½�ui�2; �ui�1; �ui; �uiþ1; �uiþ2�t;
A � ½aj�tj2f0;...;4g;

C �

c1j ¼ ð�1Þj
jDxi�2

Dxi�1 þ Dxi
2

� �j � Dxi�1 þ Dxi�2 þ Dxi
2

� �j
h i

;

c2j ¼ ð�1Þj
jDxi�1

Dxi
2

� �j � Dxi�1 þ Dxi
2

� �j
h i

;

c3j ¼ ðDxiÞj�1

j2j ð1þ ð�1Þjþ1Þ j 2 f1 . . . 5g;

c4j ¼ 1
jDxiþ1

Dxiþ1 þ Dxi
2

� �j � Dxi
2

� �j
h i

;

c5j ¼ 1
jDxiþ2

Dxiþ2 þ Dxiþ1 þ Dxi
2

� �j � Dxiþ1 þ Dxi
2

� �j
h i

:

2666666666664

For solving the Riemann’s problem that arises at each interface, we only need the approximations to the val-
ues of u(x) at the cell boundaries.

These values are calculated according to the relation:
uL
iþ1=2 ¼ ð

t
D� C�1Þ �U �

X5

j¼1

~aj�uiþj�3 ð5Þ
with the following definition: D � Dxi
2

� �j�1
h i

j¼1;...;5
2−i
u

)(~
1 xu

)(~
2 xu

)(~ xuopt

1−i
u i

u
1+i

u
2+i

u

)(~
3 xu

Fig. 1. Discrete stencils for the CWENO5 procedure.
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The constants f~ajg depend on the cell sizes, Dxi, but not on the function u itself. Practically, these constants
are pre-computed in the case of a non-uniform grid and stored before solving the PDEs.

For the calculations of uR
i�1=2, the constants f~ajg are simply calculated by modifying the form of the vector

D:
D � ð�1Þjþ1 Dxi

2

� �j�1
" #

j¼1;...;5

:

When the grid is uniform, Dxi � Dx, the expressions for the polynomial coefficients, aj, do not depend on the
points of discretization anymore. In such a case, these expressions can be explicitly formulated to fully deter-
mine ~uoptðxÞ and, later, the smoothness indicators:
a0 ¼ 1067
960

�ui � 29
480
ð�uiþ1 þ �ui�1Þ þ 3

640
ð�uiþ2 þ �ui�2Þ;

48Dx� a1 ¼ 34ð�uiþ1 � �ui�1Þ þ 5ð�ui�2 � �uiþ2Þ;
�16Dx2 � a2 ¼ �ui�2 þ 22�ui þ �uiþ2 � 12ð�uiþ1 þ �ui�1Þ;
�12Dx3 � a3 ¼ 2ð�uiþ1 � �ui�1Þ þ ð�ui�2 � �uiþ2Þ;
24Dx4 � a4 ¼ �ui�2 þ 6�ui þ �uiþ2 � 4ð�uiþ1 þ �ui�1Þ:

8>>>>>><>>>>>>:
ð6Þ
Finally, the calculated point-values at the cell boundary x = xi+1/2 are such that
uiþ1=2 � ~uoptðxiþ1=2Þ ¼ uðxiþ1=2Þ þOðDx5Þ ð7Þ
To derive an essentially non-oscillatory reconstruction, we need to define three supplementary polynomials
ð~u1ðxÞ; ~u2ðxÞ; ~u3ðxÞÞ, approximating u(x) with a lower accuracy on Ii.

Thus, we define the polynomial of second-order accuracy, ~u1ðxÞ, on the reduced stencil {Ii�2, Ii�1, Ii}, ~u2ðxÞ is
defined on the stencil {Ii�1, Ii, Ii+1}, whereas ~u3ðxÞ is defined on the stencil {Ii, Ii+1, Ii+2} (see Fig. 1).

When the grid is non-uniform, we strictly follow the procedure previously explained. Now, we have to
invert a 3 � 3 linear system similar to (4) for the unknown coefficients {aj}, j 2 {0,. . .,2}, defining ~u1ðxÞ,
~u2ðxÞ and ~u3ðxÞ.

Once again, the constants determining the interpolation are pre-computed and stored before solving the
PDEs.

When the grid is uniform, the values of the coefficients for ~u1ðxÞ, ~u2ðxÞ and ~u3ðxÞ can be explicitly
formulated.

For ~u1ðxÞ defined on {Ii�2, Ii�1, Ii}, we have
a0 ¼ 23
24

�ui þ 1
12
ð�ui�1 � 1

2
�ui�2Þ;

2Dx� a1 ¼ 3�ui � 4�ui�1 þ �ui�2;

2Dx2 � a2 ¼ �ui � 2�ui�1 þ �ui�2:

8><>: ð8Þ
For ~u2ðxÞ defined on {Ii�1, Ii, Ii+1}:
a0 ¼ 13
12

�ui þ 1
24
ð�ui�1 þ �uiþ1Þ;

2Dx� a1 ¼ ð�uiþ1 � �ui�1Þ;
2Dx2 � a2 ¼ �uiþ1 � 2�ui þ �ui�1:

8><>: ð9Þ
And for ~u3ðxÞ defined on {Ii, Ii+1, Ii+2}:
a0 ¼ 23
24

�ui þ 1
12

1
2
�uiþ1 � �uiþ2

� �
;

�2Dx� a1 ¼ 3�ui � 4�uiþ1 þ �uiþ2;

2Dx2 � a2 ¼ �ui � 2�uiþ1 þ �uiþ2:

8><>: ð10Þ
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2.3. Essentially non-oscillatory reconstruction

If the discrete stencil defining ~uoptðxÞ contains a discontinuity or large gradients, spurious oscillations can
appear in the numerical solution. To avoid such a problem we construct a WENO procedure that smoothly
adapts the stencil in the neighbourhood of the singularity.

Defining the non-oscillatory reconstruction on Ii by ~uiðxÞ, we want the following properties to be verified:
~uiðxÞ ¼

~uoptðxÞ if the stencil fI i�2; I i�1; I i; I iþ1; I iþ2g is in the smooth regions;

~u1ðxÞ if the solution is not smooth and fI i�2; I i�1; I ig is in the smooth region;

~u2ðxÞ if the solution is not smooth and fI i�1; I i; I iþ1g is in the smooth region;

~u3ðxÞ if the solution is not smooth and fI i; I iþ1; I iþ2g is in the smooth region:

8>>><>>>: ð11Þ
To implement a specific solution technique, we extended the principle of the central WENO interpolation de-
fined in [8].

First, we construct an ENO interpolant as a convex combination of polynomials that are based on different
discrete stencils.

Specifically, we define in the discrete cell Ii:
~uiðxÞ �
X

j

wj � ~ujðxÞ;
X

j

wj ¼ 1;wj P 0 j 2 f1; 2; 3; cg; ð12Þ
~u1ðxÞ, ~u2ðxÞ and ~u3ðxÞ are the previously defined polynomials. ~ucðxÞ is the second-order polynomial defined on
the central stencil {Ii�2, Ii�1, Ii, Ii+1, Ii+2}.

~ucðxÞ is calculated such that the convex combination (12), will be fifth-order accurate in smooth regions.
Therefore, it must verify:
~uoptðxÞ ¼
X

j

Cj � ~ujðxÞ 8x 2 I i;
X

j

Cj ¼ 1; Cj P 0; j 2 f1; 2; 3; cg: ð13Þ
The constants Cj represent ideal weights for (12). As already noted in [8], the freedom in selecting these con-
stants has no influence on the properties of the numerical stencil; any symmetric choice in (13), provides the
desired accuracy for ~uoptðxÞ.

In what follows, we make the choice: C1 = C3 = 1/8, C2 = 1/4, Cc = 1/2. Then the central polynomial,
~ucðxÞ, can be calculated from (13):
~ucðxÞ ¼ ½~uoptðxÞ � C1~u1ðxÞ � C2~u2ðxÞ � C3~u3ðxÞ�=Cc 8x 2 I i: ð14Þ

Note that, although the stencil defining ~ucðxÞ is the five-points stencil {Ii�2, Ii�1, Ii, Ii+1, Ii+2}, this polynomial is
only a second-order approximation of u(x). This is not a drawback since the role of ~ucðxÞ is only to recover
high-order of accuracy in smooth regions.

To complete the reconstruction of ~uiðxÞ and to ensure properties (11), it is left to compute the non-oscilla-
tory weights, wj. To define these weights, we follow the reasoning of [2].

To achieve the optimal interpolation, (13), in smooth regions, the weights wj must smoothly converge to the
ideal weights Cj as Dx approaches zero. In an opposite way, in regions where a discontinuity does exist, the
weights should effectively remove the contribution of stencils that contain the discontinuity, according to
properties (11).

To this end, combining (12) and (13) gives
~uiðxÞ ¼ ~uoptðxÞ þ
X

j2f1;2;3;cg
ðwj � CjÞ � ~ujðxÞ 8x 2 I i: ð15Þ
Since ~ujðxÞ ¼ uðxÞ þOðDx3Þ; j 2 f1; 2; 3; cg, wherever the solution is smooth (15) can be re-written as
~uiðxÞ ¼ ~uoptðxÞ þ
X

j2f1;2;3;cg
ðwj � CjÞ � ðuðxÞ þOðDx3ÞÞ 8x 2 I i: ð16Þ
Therefore, the second term of (16) must be at least a O(Dx5) quantity for u(x) to be approximated at fifth-order
by ~uiðxÞ in regions of smoothness.
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Then the necessary and sufficient conditions are
P
j2f1;2;3;cg

wj � 1

 !
� uðxÞ ¼ OðDx5Þ;P

j2f1;2;3;cg
ðwj � CjÞ ¼ OðDx2Þ:

8>>><>>>: ð17Þ
It is sufficient to require
P
j2f1;2;3;cg

wj � 1 6 OðDx5Þ;

wj � Cj 6 OðDx2Þ; wj P 0 8j 2 f1; 2; 3; cg:

8<: ð18Þ
Up to this point, the development of the fifth-order WENO scheme has been general. To fully determine the
CWENO5 scheme, we need now to specify the non-oscillatory weights.

2.4. The non-oscillatory weights

To begin, we calculate the general indicators of smoothness defined in [2]:
ISi
j �

1

u2
max

X
k

Dx2k�1
i �

Z
Ii

dk~uj

dxk

� �2

dx; j 2 f1; 2; 3; cg; ð19Þ
where umax is calculated over the whole calculation domain X: umax ¼ max jujx2X. These indicators provide a
measure of the smoothness of the solution over the cell Ii, according to the particular stencil selected to define
~ujðxÞ on that cell.

In regions of smoothness, ISi
j � 1, whereas ISi

j ¼ Oð1Þ in cells with strong gradients or discontinuities.
Specifically, formula (19) can be explicited for ~u1ðxÞ, ~u2ðxÞ and ~u3ðxÞ �

P3
j¼1aj�1xj�1

� �
on a non-uniform

mesh:
ISi
j ¼ a2

1Dx2
i þ

13

3
a2

2Dx4
i þ OðDx6

i Þ; j 2 f1; 2; 3g: ð20Þ
For ~ucðxÞ, formula (19) and definition (14) give
ISi
c ¼ a2

1Dx2
i þ

13

3
a2

2 þ
1

2
a1a3

� �
Dx4

i þOðDx6
i Þ: ð21Þ
For each quadratic polynomial ð~ujðxÞ; j 2 f1; 2; 3gÞ, the polynomial coefficients {ap} are calculated by numer-
ically inverting (4). The coefficients for ~ucðxÞ are then deduced from formula (14). When the mesh is uniform,
the coefficients {ap} are explicitly given by formulae (6), (8), (9) and (10). The polynomial coefficients for ~ucðxÞ
are then determined.

The general form of ISi
j is then
ISi
j ¼ a2

1Dx2
i ð1þOðDx2

i ÞÞ: ð22Þ
If the jth stencil lies in smooth monotone regions, then a1 = O(1) and consequently, ISi
j ¼ OðDx2

i Þ � 1. If a
discontinuity appears in the jth stencil, then a1 = O(1/Dxi) and ISi

j ¼ Oð1Þ.
Hence, having calculated ISi

j, we can now define the non-oscillatory weights, wj, that verify conditions (18).
According to [2], these weights are defined by
wj �
ajP

p2f1;2;3;cgap
; j 2 f1; 2; 3; cg ð23Þ
with
ap �
Cp

ðeðuÞ þ ISi
pÞ

2
; p 2 f1; 2; 3; cg; ð24Þ
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where we introduced the following modification in (24): e(u) is a function which measures the regularity of the
solution, u, in the entirety of the computational domain, X. This function is defined to correct – at least theo-
retically – some deficiencies that may appear in some cases if one uses the procedure defined in [2].

To simply illustrate this point, let us suppose that the optimum five-points stencil, {Ii�2, Ii�1, Ii, Ii+1, Ii+2},
lies in the regions of smoothness of the solution.

Then, the classical procedure gives us the following result:
ap �
Cp

ðeþOðDx2
i ÞÞ

2
; p 2 f1; 2; 3; cg; ð25Þ
where e is defined as a ‘‘positive real number which is introduced to avoid the denominator to become zero”
[2]. Usually, this parameter is taken equal to 1 � 10�6, independent of the solution. However, as already noted
in [6] or [7], e is a dimensional quantity and should not only be only selected so as to prevent an indeterminate
form of (25).

Indeed, on relatively coarse meshes, it may happen that the term OðDx2
i Þ in (25) be greater than e (let us

note that, numerically, the term OðDx2
i Þ in (25) has no reasons to have exactly the same value from one stencil

to another). The consequence is that the non-oscillatory weights, wp, verify the following property:
wp ¼ Oð1Þ > 0;
X

p

wp ¼ 1; p 2 f1; 2; 3; cg: ð26Þ
Although this result ensures that all the non-oscillatory weights are different from zero (i.e all the polynomials
are conserved in (12)), it does not verify the second condition in (18). This means that the numerical scheme is
only third-order accurate, in such a case.

To remedy this, there exist two solutions.
First, one can select a finer mesh such that the denominator of (25) is predominated by e (term OðDx2

i Þ lower
than e). In such a case, we obtain the expected result, wp ¼ Cp þOðDx2

i Þ, and the scheme becomes fifth-order
accurate. This way, we may obtain a ‘‘super convergence” phenomenon that sometimes appears in some
computations.

But, necessarily, a question arises: what is the utility of a high-order method if one is condemned to use fine
meshes to get the advantages of an optimum theoretical accuracy?

The solution to palliate this difficulty – this is the second solution - is to take into account the dimensional
meaning of e by selecting e � O(1) in (25). Indeed, with such a choice we obtain again the ‘‘ad-hoc result”:
wp ¼ Cp þOðDx2

i Þ; however, this result now remains valid even if the mesh is coarse.
The function we introduced into (24) tries to mimic this latter solution to preserve the convergence prop-

erties of the scheme, even on coarse meshes.
This function is defined as follows:
eðuÞ � minp2f1;2;3;cgðISpÞ
maxifmaxp2f1;2;3;cgðISi

pÞg

" #2

: ð27Þ
With ISp � kISi
pkL1
8p 2 f1; 2; 3; cg.

The value of e(u) is actualized at each time-step and constitutes a global measurement of the regularity of
the solution in X; unfortunately, a local definition of e(u) did not give successful results on numerical tests.

Now, the WENO scheme using this new function has the following properties.
If the solution is smooth over the domain X, then e (u) = O(1) since both the numerator and denominator

of (27) are OðDx2
i Þ. In such a case, the coefficient ap, verifies the property:
ap ¼
Cp

ðOð1Þ þOðDx2
i ÞÞ

2
: ð28Þ
Consequently, we have for the non-oscillatory weights, wp:
wp ¼ Cp þOðDx2
i Þ; p 2 f1; 2; 3; cg: ð29Þ
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This result, combined with the definition, (23), ensures that the sufficient conditions, (18), are satisfied: the
resulting scheme is therefore fifth-order accurate in the smooth regions, whatever the mesh considered.

Now, if there exists a discontinuity in the five-points stencil, {Ii�2, Ii�1, Ii, Ii+1, Ii+2}, one or more of the
p(p 2 {1,2,3,c}) candidate stencils reside in smooth regions of the numerical solution. In such a case,
eðuÞ ¼ OðDx4

i Þ because minifminpðISpÞg ¼ OðDx2
i Þ and maxifmaxpðISi

pÞg ¼ Oð1Þ. Then, for stencils that lie
in the smooth region:
ap ¼
Cp

ðOðDx4
i Þ þOðDx2

i ÞÞ
2
) wp ¼ Oð1Þ þOðDx2

i Þ: ð30Þ
In this case, the non-oscillatory weights, wp, do not resemble the ideal weights anymore: the scheme becomes
third order accurate. If the pth stencil is smooth, then the pth polynomial defined from this stencil is useful and
should be utilized. The result above verifies this principle and definition (23) ensures the convexity of the com-
bination of these polynomials: the resulting scheme remains monotone.

Lastly, for non-smooth reduced stencils included into the optimum stencil, we have the following property:
ap ¼
Cp

ðOðDx4
i Þ þOð1ÞÞ2

) wp ¼ OðDx4
i Þ: ð31Þ
Therefore, for small Dxi, the weight assigned to the non-smooth stencil vanishes as Dxi ? 0.
Thus, we designed, at the theoretical level up to now, a modified WENO procedure that ensures the ENO

properties of the interpolation in the regions of discontinuities while preserving the optimal properties of con-
vergence when the solution is smooth.

2.5. The CWENO5 scheme for scalar hyperbolic problems

The final form of the CWENO5 scheme is given by
of
ox

				
i

¼ ð
~f iþ1=2 � ~f i�1=2Þ

Dxi
ð32Þ
and
~uL
iþ1=2 ¼

X
j2f1;2;3;cg

wj � ~ujðxiþ1=2Þ; ð33Þ
~f iþ1=2 is calculated by the Roe’s method (formula (2)). The non-oscillatory weights, {wj}, are given by (23) and
calculated from (20), (21), (24) and (27).

When the grid is uniform, the computations are simplified by using formulae (6), (8) and (9) for the poly-
nomial coefficients.

Then, the calculation of ð~uL
iþ1=2; ~u

R
i�1=2Þ produces the following simplified result:
~uR
i�1=2 ¼ � 7

120
wc � 1

6
w1

� �
�ui�2 þ 1

3
w2 þ 5

6
w1 þ 21

40
wc

� �
�ui�1

þ 5
6
w2 þ 1

3
w1 þ 11

6
w3 þ 73

120
wc

� �
�ui þ � 1

6
w2 � 7

6
w3 � 7

120
wc

� �
�uiþ1 þ 1

3
w3 � 1

60
wc

� �
�uiþ2;

~uL
iþ1=2 ¼ � 1

60
wc þ 1

3
w1

� �
�ui�2 þ � 1

6
w2 � 7

6
w1 � 7

120
wc

� �
�ui�1

þ 5
6
w2 þ 1

3
w3 þ 11

6
w1 þ 73

120
wc

� �
�ui þ 1

3
w2 þ 5

6
w3 þ 21

40
wc

� �
�uiþ1 þ � 1

6
w3 � 7

120
wc

� �
�uiþ2:

8>>>><>>>>: ð34Þ
2.6. Extension to non-linear systems: the one-dimensional Euler equations

In this section, we extend the CWENO5 scheme to solve systems of hyperbolic conservation laws. Specif-
ically, we consider the one-dimensional Euler equations in the following conservation form:
oU

ot
þ oFðUÞ

ox
¼ 0; ð35Þ
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where
U � ½q; qu; qE�t; F � ½qu;qu2 þ p; quH �t ð36Þ

H � E + p/q is the specific total enthalpy and this set of equations is closed by the equation-of-state of an ideal
gas: p = (c � 1)(qE � u2/2), c = 1.40.

As in the scalar case, the semi-discrete conservative finite-volume scheme discretizing (35) is written as
dU i

dt
¼ � 1

Dxi
½eF iþ1=2 � eF i�1=2�: ð37Þ
Instead of using the Roe’s method to calculate eF iþ1=2, we selected the HLL (Harten, Lax and Van-Leer)
approximate Riemann solver [9]. Indeed, the HLL solver is one of the simplest shock-capturing schemes,
as it does not require the knowledge of the eigenvectors of (35). Therefore, such a solver is easier to implement
for solving (35). As an extra bonus, this scheme is not subject to numerical problems such as odd–even decou-
pling in propagating shocks, problems that one can encounter using Roe’s scheme, for example.

Thus, in this approach, the numerical flux eFiþ1=2 is calculated according to the following formula:
eF iþ1=2 ¼
kþiþ1=2F ðUL

iþ1=2Þ � k�iþ1=2F ðU R
iþ1=2Þ

kþiþ1=2 � k�iþ1=2

þ
kþiþ1=2 � k�iþ1=2

kþiþ1=2 � k�iþ1=2

� ðUR
iþ1=2 � U L

iþ1=2Þ: ð38Þ
The characteristic velocities of the scheme are given by
kþiþ1=2 � max uL
iþ1=2 þ aL

iþ1=2; u
R
iþ1=2 þ aR

iþ1=2; 0
� �

;

k�iþ1=2 � min uL
iþ1=2 � aL

iþ1=2; u
R
iþ1=2 � aR

iþ1=2; 0
� �

:

8><>: ð39Þ
The conservative point-values, ðUL;R
iþ1=2Þ, are calculated from the interpolated primitive variables

½qL;R
iþ1=2; u

L;R
iþ1=2; p

L;R
iþ1=2�

t. These variables are interpolated by using the CWENO5 procedure developed in the sca-
lar case. Although this choice is not referenced in the literature as the best one for dealing with one-dimen-
sional problems (a characteristic-wise reconstruction would be more suitable), it has the advantage of being
general since its extension to multi-dimensional problems is straightforward. Alternatively, the characteristic
variables are undefined for a multi-dimensional hyperbolic problem because the physically relevant character-
istic directions are a priori unknown.

Lastly, only one smoothness indicator is calculated for the all the variables of the problem; this indicator is
based upon the density, q, since this quantity detects both a shock and a contact discontinuity.

We ensure the time-integration of (37) by using the third-order TVD Runge–Kutta procedure previously
mentioned.

3. Numerical validation

3.1. Asymptotic stability analysis

First, we study the asymptotic stability of the CWENO5 scheme. To this end, we compute the complex
eigenvalues of the matrices obtained by the spatial discretization of the following scalar linear system:
ut þ ux ¼ � 1
S

dS
dx u 8x 2 ½�1; 1�;

uðx ¼ �1; tÞ ¼ f ðtÞ:

�
ð40Þ
The computational domain is divided into N non-uniform intervals of width Dxi(�xi+1/2 � xi�1/2). The spatial
derivatives at all grid points, including the boundary points, are discretized by using the algebraic formulae
previously developed.

The source term: � 1
S

dS
dx u, is introduced to model problems with a varying geometry according to x (for

example, the one-dimensional nozzle flow problem).
In our example, the shape of the geometry is given by S(x) � x2 � x + 1/2.
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Thus, we write the upwind approximation
Fig. 2.
Dxmin/
uxji �
uL

iþ1=2 � uL
i�1=2

Dxi
: ð41Þ
Substituting approximation (41) into the linear problem (40) with the non-periodic boundary conditions at
x = �1 leads to a system of ODEs that can be written
dU

dt
¼MUþQuf ðtÞ þ SU; ð42Þ
where U � ½�ui�t is an N-dimensional vector representing the values of the solution at the discrete points.
M is an N � N matrix that contains the algebraic coefficients for the discretization and S the N � N matrix

accounting for the source terms. Lastly, Qu is a vector of dimension N accounting for the boundary conditions
at x = �1.

The asymptotic stability condition for the semi-discrete system (42) is that all eigenvalues of matrix M + S

only contain negative real parts. This is a necessary but not sufficient condition for the stability of long-time
integration of the system [10].

To begin, we study the spatial discretization of (40) with S � 0 (no source terms). Fig. 2 gives numerical
results for N = 100 and N = 200 grid points and for two grid stretching typified by Dxmin/Dxmax = 1 (uniform
grid) and Dxmin/Dxmax = 0.1 (stretched grid). As one can see, the discretization is stable and is free of the grid
stretching: in the worst case, Fig. 2(b) (N = 100, Dxmin/Dxmax = 0.1), the eigenvalue which is closest to the
unstable area is such that Remax(k) = �15.5, Im(k) = �20. Consequently, whatever the stretching of the grid
or the mesh resolution, the spatial discretization remains stable, Fig. 2(a)–(d). This is still true when a source
CWENO5 scheme. Asymptotic stability analysis: eigenvalue spectra for the discretization of ux. Influence of grid stretching,
Dxmax and grid resolution, N.
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term is introduced in the scalar equation. Indeed, the real part of the discrete eigenvalues is strictly negative
everywhere, Fig. 3.

However, one can note that the stability region is slightly reduced (Remax(k) � �4) for the case N = 100,
Dxmin/Dxmax = 0.1, Fig. 3(b).

Now, we study the time-integration of (42) by the third-order Runge–Kutta TVD procedure [15]. For these
computations, the CFL is selected such that Dt/mini(Dxi) = 0.8. To be stable, the temporal integration of (42)
must be such that the values of the complex factor of amplification, remain in the area defined by the unit
circle centred at the origin [10]. First, Fig. 4 presents numerical results with no source terms (S � 0 in
(42)). As one can see, the CWENO5 scheme with Dirichlet boundary conditions is stable even on stretched
meshes, Fig. 4(b), since the discrete eigenvalue spectrum lies in the stability area. Now, if we introduce a source
term in (42), we get the results presented in Fig. 5. We can see that the scheme remains stable, even if the mesh
is stretched (N = 200, Dxmin/Dxmax = 0.1), Fig. 5(b).

To conclude the first study, one can say that the discretization of (40) by the optimum fifth-order interpo-
lation is free of the grid stretching even if there exists a source term. In addition, the influence of the boundary
conditions does not seem to impose a heavy constraint on the CFL number. Practically, the maximum CFL
number allowed by the stability constraint is found to be equal to 1.55 if Dxmin/Dxmax = 1 and to 1.59 if Dxmin/
Dxmax = 0.1.
Fig. 3. CWENO5 scheme. Asymptotic stability analysis: eigenvalue spectra for the discretization of ux þ 1
S

dS
dx u. Influence of the mesh

resolution, N, for a given stretching of the grid, Dxmin/Dxmax.



Fig. 4. CWENO5 scheme. Space–time discretization of ut + ux = 0. (a) N = 200, Dxmin/Dxmax = 1, CFL = 0.8 (b) N = 200, Dxmin/
Dxmax = 0.1, CFL = 0.8.
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3.2. Simulation of shock-induced sound

To simulate such a problem, we use the linear problem proposed by Casper and Carpenter [11].
We consider the scalar problem:
ut þ aðxÞux ¼ 0; uðx; 0Þ ¼
1=2; x < xs;

1; x > xs;

�
aðxÞ ¼

2; x < xs;

1; x > xs
8x 2 ½0; 1�:

�
ð43Þ
The inflow boundary condition is uð0; tÞ ¼ 1
2
ð1þ d� sin xtÞ.

This problem models the interaction of a sound wave with a shock. The ability to obtain an accurate solu-
tion to such problem is important in the development of shock-capturing methods for CAA research, for
example.

Practically, we made the following choices: d = 10�5, x = 16p, xs = 1/2. Computations are run up to
t = 1.25 (10 temporal periods of the initial signal).



Fig. 5. CWENO5 scheme. Space–time discretization of ut þ ux ¼ � 1
S

dS
dx u (a) N = 200, Dxmin/Dxmax = 1, CFL = 0.8 (b) N = 200, Dxmin/

Dxmax = 0.1, CFL = 0.8.
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First, this problem is discretized by the CWENO5 scheme. For all the computations, we selected a CFL
(�maxia(xi)Dt/Dx) number equal to 0.5. To compare with a competing finite-volume method, we chose a
uniform mesh (Dxi � Dx). The competing method selected is the ‘‘classical” fifth-order WENO scheme
(UWENO5 scheme) of Shu [2], (e = 10�6 in the calculation of the non-oscillatory weights).

To begin, Fig. 6(a) presents numerical results for the CWENO5 scheme, for N = 160 grid points. As
one can see it, the structure of the sound wave is preserved after having crossed the shock wave. To com-
pare with the UWENO5 scheme of Shu, we consider Fig. 6(b). These results are comparable with the
precedents.

Then, Fig. 7 compares the numerical errors of both schemes: once again, the results are equivalent for both
schemes. The corresponding non-oscillatory weights,wj, are plotted in the computational domain for the
CWENO5 scheme, Fig. 8(a). These results are obtained with definition (27) for e: as one can note it, except
at the two grid points defining the shock, the weights wj reach their ideal values everywhere
(w1 = w3 = 0.125, w2 = .25). However, exactly the same results are obtained if one uses the ‘‘classical” value



Fig. 6. Simulation of shock-induced sound. CWENO5 scheme. Linear problem ut þ aðxÞux ¼ 0; uð0; tÞ ¼ 1
2
ð1þ e sin xtÞ. N = 160,

CFL = 0.5, t = 1.25, e = 10�5, x = 16p.
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for e (e = 10�6): this means that the new way of calculating e by (27) does not bring anything in this case. This
result is confirmed if one considers the numerical error of discretization for both solutions in the computa-
tional domain, Fig. 8(b).

At this point, therefore, one may conclude that the CWENO5 scheme is equivalent to the ‘‘classical” UWE-
NO5 scheme.

3.3. Non-linear scalar problem: the Burgers equation

We solve the following non-linear scalar Burgers equation:
ut þ
u2

2

� �
x

¼ 0 8x 2 ½0; 2� ð44Þ
with the initial condition: u(x, t = 0) = 1/2 + sin(px) and a 2-periodic boundary condition. Generally
speaking, the CFL number is defined as maxijun

i jDt=miniDxi. Its value is taken as 0.5 for both CWENO5
and UWENO5 schemes except for the accuracy tests where a low CFL number (CFL = 0.01) is selected to



Fig. 7. Simulation of shock-induced sound: linear problem ut + a(x)ux = 0. Comparison of the numerical errors in the computational
domain between the CWENO5 scheme and the UWENO5 scheme (N = 160 grid points).

Fig. 8. CWENO5 scheme. Simulation of shock-induced sound: linear problem ut + a(x)ux = 0. (a) Non-oscillatory weights (N = 80), (b)
Discretization error for e � 10�6 and e � e(u).
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guarantee that spatial error dominates. To begin, a uniform mesh (Dxi � Dx) with N cells is used for this
test case.

When t = 1/2p, the solution is still smooth and the discrete errors and numerical orders of accuracy are
shown in Table 1 (CWENO5 scheme, e = 10�6) and Table 2 (CWENO5 scheme, e � e(u) given by (27)).
As can be seen, both versions reach their designed order of accuracy; however, the solution with e � e(u)
produces a lower error level on the same mesh. In addition, the convergence towards the theoretical order
of accuracy is more regular with this latter solution. Fig. 9 explains this result: we compare the non-oscil-
latory weights for the classical solution (e = 10�6) and the new solution (e � e(u)), for a relatively coarse
mesh (N = 40 grid points). We can see that the non-oscillatory weights have their ideal values almost
everywhere for the new solution; this is no more the case if one considers the solution with e = 10�6:
one then encounters the drawback we noticed in the previous section and the method loses its high accu-
racy on coarse meshes. Of course, when the mesh is refined, the non-oscillatory weights obtained for
e = 10�6 reach their ideal values. However, it is proved that formula (27) brings a substantial improvement
in accuracy on coarse meshes, as long as the solution remains smooth. To complete this analysis, Table 3
presents the numerical results obtained with the UWENO5 scheme: the results are very similar with those
obtained with the CWENO5 scheme for e = 10�6.

When t = 3/2p, a shock has already appeared in the solution and it is located at x = 1.238.
To begin, Fig. 10 shows the non-oscillatory weights for both solutions: e = 10�6 (Fig. 10(a)) and e � e(u)

(Fig. 10(b)). As one can see it, both results are similar; as already noticed in the preceding test case, the
new procedure (27) does not bring any advantage in regions where a discontinuity appears. The results that
follow are obtained with formula (27).

Thus, Fig. 11 shows the numerical solution on two meshes: a uniform mesh with N = 80 grid points
(Fig. 11(a)) and a stretched mesh near the shock place (Dxmin/Dxmax = 0.1) (Fig. 11(b)). As one can note it,
the shock is captured without any numerical oscillation in both cases and its resolution is improved when
the mesh is stretched. In Fig. 12(a), we compare the CWENO5 scheme with the UWENO5 scheme on a uni-
form mesh: in both cases, the shock is captured in the same way though these schemes are structurally very
different. Fig. 12(b) confirms this fact: the discretization errors in the computational domain for both schemes
can be regarded as equivalent.
Table 1
ut + uux = 0; u(x, t = 0) = 1/2 + sin(p � x); CWENO5 scheme with periodic boundary conditions; t = 1/2p; CFL = 0.010; e = 10�6. L1

and L1 errors

N L1 error L1 order L1 error L1 order

10 9.30 � 10�3 – 1.25 � 10�2 –
20 1.44 � 10�3 2.7 3.80 � 10�3 1.7
40 1.06 � 10�4 3.7 2.59 � 10�4 3.8
80 4.73 � 10�6 4.5 2.36 � 10�5 3.4

160 1.58 � 10�7 4.9 1.27 � 10�6 4.5
320 3.05 � 10�9 5.7 1.51 � 10�8 6.3

Table 2
ut + uux = 0; u(x, t = 0) = 1/2 + sin(p � x); CWENO5 scheme with periodic boundary conditions; t = 1/2p; CFL = 0.010; e � e(u). L1 and
L1 errors

N L1 error L1 order L1 error L1 order

10 5.10 � 10�3 – 1.06 � 10�2 –
20 6.88 � 10�4 2.9 3.05 � 10�3 1.8
40 4.05 � 10�5 4.1 2.10 � 10�4 3.9
80 1.38 � 10�6 4.8 1.04 � 10�5 4.3

160 4.75 � 10�8 4.9 3.60 � 10�7 4.8
320 1.52 � 10�9 5 1.18 � 10�8 4.9



Fig. 9. CWENO5 scheme. Burgers equation. Case without shock. u(x, t = 0) = 1/2 + sin(px), t = 1/2p, N = 40, CFL = 0.01. Non-
oscillatory weights: (a) e � 10�6, (b) e � e(u).

Table 3
ut + uux = 0; u(x, t = 0) = 1/2 + sin(p � x); UWENO5 scheme with periodic boundary conditions; t = 1/2p; CFL = 0.010; e = 10�6. L1

and L1 errors

N L1 error L1 order L1 error L1 order

10 9.52 � 10�3 – 1.71 � 10�2 –
20 1.41 � 10�3 2.7 3.26 � 10�3 2.4
40 9.10 � 10�5 4 3.01 � 10�4 3.4
80 3.96 � 10�6 4.5 1.74 � 10�5 4.1

160 1.46 � 10�7 4.8 8.63 � 10�7 4.3
320 3.81 � 10�9 5.3 1.98 � 10�8 5.8
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3.4. One-dimensional hyperbolic systems: the Euler equations

Unless mentioned, the computations are run on a uniform mesh, Dxi � Dx. N grid points are utilized to
discretize the equations.



Fig. 10. CWENO5 scheme. Burgers equation. Case with shock. u(x, t = 0) = 1/2 + sin(px), t = 3/2p, N = 80, CFL = 0.50. Non-oscillatory
weights: (a) e � 10�6, (b) e � e(u).
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The CFL number is defined as
CFL � Dt �
max

i
ðjuij þ aiÞ

min
i

Dxi
;

where ai �
ffiffiffiffiffiffi
cp
q

			
i

r
represents the speed of sound for an ideal gas.

We choose CFL = 0.5 for almost all test cases, except for the accuracy tests.

Example 1. We solve the Euler equations, (35), in the domain [0, 2]. The initial condition is set to be
q(x, t = 0) = 1 + 0.2 � sin(px), u(x, t = 0) = 1, p(x, t = 0) = 1, with a 2-periodic boundary condition. The



Fig. 11. Burgers equation. Case with shock. u(x, t = 0) = 1/2 + sin(px), t = 3/2p, N = 80, CFL = 0.5. CWENO5 scheme: (a) uniform
mesh, (b) non-uniform mesh (Dxmin/Dxmax � 0.1).
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numerical solution is computed up to t = 2 with CFL = 0.02 for both schemes. The errors and numerical
orders of accuracy of the density, q, for the CWENO5 scheme (resp. UWENO5 scheme) are shown in Table 4
(e = 10�6) and Table 5 (e � e(u)) (resp. Table 6). Both schemes have trouble to reach their theoretical order of
accuracy when e = 10�6 (Tables 4 and 6): this first result agrees with that obtained in the scalar case.

Once again, the CWENO5 scheme with formula (27) remains the most accurate one and presents an almost
monotone convergence.

Example 2 (Sod problem). This problem and the one that follows only contain shocks and simple smooth
region solutions. It is simply used to demonstrate the non-oscillatory properties of the CWENO5 scheme near
discontinuities and to validate the specific choices made for the non-oscillatory weights.

The Sod problem is defined by the following left- and right-initial states:
ðq; u; pÞ ¼ ð1; 0; 1Þ 8x 6 0:5; ðq; u; pÞ ¼ ð0:125; 0; 0:1Þ 8x > 0:5:
To discretize the computational domain [0,1], we use 200 grid points. The solution is run up to t = 0.14.
Although this problem is not necessarily a good test for high-order shock capturing schemes (a good

second-order ENO scheme would suffice, see [1] for example), we can see that the CWENO5 scheme performs



Fig. 12. Burgers equation. Case with shock. N = 80, t = 3/2p Comparison between the CWENO5 scheme and the UWENO5 scheme. (a)
computed solution, (b) discretization error.
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reasonably well, Fig. 13 left. The contact discontinuity is smeared more than the shock, Fig. 13(a) left. In
addition, it is interesting to note that the component-wise reconstruction is not as oscillatory as expected; this
is no more the case when one considers the UWENO5 scheme, Fig. 13 right. Indeed, noticeable oscillations
appear in regions where the solution varies. Of course, these oscillations become less significant when the mesh
is refined; however, this result demonstrates the sensitivity of the UWENO5 scheme to the choice of the
reconstruction. Better results would be obtained with a characteristic-wise reconstruction [12,19].

Example 3 (Lax problem). The Lax problem is defined by the following left- and right-initial states:
ðq; u; pÞ ¼ ð0:445; 0698; 3:528Þ 8x 6 0; ðq; u; pÞ ¼ ð0:5; 0; 0:571Þ 8x > 0;



Table 4
One-dimensional Euler equations q(x, t = 0) = 1 + 0.2 � sin(px), u(x, t = 0) = 1, p(x, t = 0) = 1 CWENO5 scheme with periodic boundary
conditions t = 2; CFL = 0.020; e = 10�6. L1 and L1 errors of density q

N L1 error L1 order L1 error L1 order

10 6.66 � 10�2 – 6.10 � 10�2 –
20 2.05 � 10�3 5 2.13 � 10�3 4.8
40 4.05 � 10�5 5.7 3.41 � 10�5 6
80 8.30 � 10�7 5.7 5.96 � 10�7 5.8

160 1.71 � 10�8 5.6 1.12 � 10�8 5.7
320 4.97 � 10�10 5.1 5.08 � 10�10 4.5

Table 5
One-dimensional Euler equations q(x, t = 0) = 1 + 0.2 � sin(px), u(x, t = 0) = 1, p(x, t = 0) = 1 CWENO5 scheme with periodic boundary
conditions t = 2; CFL = 0.020; e � e(u). L1 and L1 errors of density q

N L1 error L1 order L1 error L1 order

10 2.05 � 10�2 – 1.55 � 10�2 –
20 5.15 � 10�4 5.2 4.04 � 10�4 5.2
40 1.44 � 10�5 5.2 1.13 � 10�5 5.2
80 4.24 � 10�7 5.1 3.32 � 10�7 5.1

160 1.30 � 10�8 5 1.01 � 10�8 5
320 4.01 � 10�10 5 3.24 � 10�10 5

Table 6
One-dimensional Euler equations q(x, t = 0) = 1 + 0.2 � sin(px), u(x, t = 0) = 1, p(x, t = 0) = 1 UWENO5 scheme with periodic boundary
conditions t = 2; CFL = 0.020; e = 10�6. L1 and L1 errors of density q

N L1 error L1 order L1 error L1 order

10 8.61 � 10�2 – 6.93 � 10�2 –
20 3.42 � 10�3 4.7 2.93 � 10�3 4.6
40 7.70 � 10�5 5.4 6.63 � 10�5 5.4
80 1.40 � 10�6 5.8 1.09 � 10�6 6

160 2.31 � 10�8 5.9 1.60 � 10�8 6
320 5.33 � 10�10 5.4 5.15 � 10�10 5

2998 G. Capdeville / Journal of Computational Physics 227 (2008) 2977–3014
200 grid points are used to discretize the computational domain [0,1]. The solution is run up to t = 1.30. Numer-
ical results are presented in Fig. 14 for the CWENO5 (Fig. 14 left) and the UWENO5 schemes (Fig. 14 right).

Comparing these results to Fig. 13, we see that the component-wise reconstruction here is much ‘‘noisier” than
in Sod’s problem. The contact discontinuity remains smeared more than the shock but oscillations are clearly
visible close to the contact discontinuity, Fig. 14(a). The oscillatory behaviour of the component-wise
reconstruction is even more pronounced in the velocity profile, Fig. 14(c). Fortunately, these oscillations become
less significant when the mesh is refined. Moreover, these oscillations remain less ‘‘noisy” than more classical
component-wise reconstructions such as the ENO scheme of Harten et al. [1], or the CWENO scheme of Qiu and
Shu [19]. The UWENO5 scheme, Fig. 14 right, remains more oscillatory than the CWENO5 scheme.

Consequently, the CWENO scheme has the important advantage to tolerate component-wise reconstruc-
tions, without generating too many significant numerical non-physical oscillations. Moreover, it appears that
the single density is a well-adapted sensor for computing the smoothness indicators for all components since
the discontinuities remain correctly captured.

Example 4 (Interacting blast waves [20]). We solve the Euler equations, with initial conditions:
ðq; u; pÞ ¼
ð1; 0; 103Þ 8x 2 ½0; 0:1½;
ð1; 0; 10�2Þ 8x 2 ½0:1; 0:9½;
ð1; 0; 102Þ 8x 2 ½0:9; 1�:

8><>:

A reflective boundary condition is applied at both x = 0 and x = 1.



Fig. 13. The Sod problem: N = 200, t = 0.14. (a) density, (b) pressure, (c) velocity Left: CWENO5 scheme. (CFL = 0.5); Right: UWENO5
scheme. (CFL = 0.15).
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The computed density q is plotted at t = 0.038 against the ‘‘exact” solution; this solution is a converged
solution computed by a classical second-order TVD scheme (‘‘minmod” limiter) with 3000 grid points.

In Fig. 15, we show the numerical results of the CWENO5 scheme with N = 400 grid points.



Fig. 14. The Lax problem: N = 200, t = 1.30. (a) density, (b) velocity, (c) pressure. Left: CWENO5 scheme (CFL = 0.5); right: UWENO5
scheme. (CFL = 0.25).
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We can see that the three contact waves, near x = 0.59, 0.76, 0.80, are well predicted. In such a case,
comparing this solution to the ‘‘exact” solution, the CWENO5 scheme resolves the salient features of the flow
with a good fidelity and can be considered a ‘‘converged” solution.



Fig. 15. Blast wave problem. Density q. t = 0.038, CFL = 0.5, CWENO5 scheme: N = 400.
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Example 5 (Shock interaction with entropy waves: the Shu–Osher problem [15]). We solve the Euler equations,
(35), with a moving Mach = 3 shock interacting with sine waves in density.

The initial condition is defined as
ðq; u; pÞ ¼ ð3:857143; 2:629369; 10:333333Þ 8x < �4;

ðq; u; pÞ ¼ ð1þ d sin 5x; 0; 1Þ 8x P �4:
For this test, we take d = 10�2. The computed density q is plotted at t = 1.8 against the ‘‘exact” solution; this
solution is a converged solution computed by the CWENO5 scheme with 2500 grid points.

In Fig. 16 we show the numerical results of the CWENO5 scheme with N = 200 grid points (Fig. 16(a)) and
N = 400 grid points (Fig. 16(b)).

For N = 200, we can see that the resolution is still insufficient: the amplitude of the entropy waves behind
the shock is too much attenuated. This solution is greatly improved with the N = 400 results (Fig. 16(b)): the
complex wave patterns after the shock entropy wave interaction are now very well predicted.

Example 6 (Shock entropy wave interactions [2]). This problem is very suitable for high-order shock-captur-
ing schemes because both shocks and complicate smooth flow features co-exist. In this example, a moving
shock interacts with an entropy wave of small amplitude.

On the domain [0,5], the initial condition is the following:
ðq; u; pÞ ¼ ð3:857143; 2:629369; 10:333333Þ 8x < 1=2;

ðq; u; pÞ ¼ ðe�d sinðkxÞ; 0; 1Þ 8x P 1=2;
where d and k are the amplitude and the wave number of the entropy wave, respectively.
The mean flow is a right moving Mach 3 shock. If d is small compared to the shock strength, the shock will

go to the right of the computational domain, at approximately the non-perturbed shock speed and generate a
sound wave that travels along with the flow behind the shock. At the same time, the small amplitude, low-
frequency entropy waves are generated in front of the shock. After having interacted with the shock, these
waves are compressed in frequency and amplified in amplitude. The main goal of such a test is to check if the
structure of the amplified waves is not lost after having crossed the shock wave. Since the entropy wave is very
weak relative to the shock, any excessive numerical oscillation could alter the generated waves and the entropy
waves.

In our computations, we take d = 0.01. Accordingly, the amplitude of the amplified entropy waves
predicted by a linear analysis, [13,14], is 0.08690716 (shown in the following figures as horizontal solid lines).



Fig. 16. Shu–Osher problem. Density q. t = 1.8 CWENO5 scheme: (a) N = 200, CFL = 0.5, (b) N = 400, CFL = 0.25.
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The pre-shock wave number, k, is selected such that k 2 {13, 26}. To get rid of the transient waves due to the
initialization, the numerical procedure is defined so that the shock crosses the computational domain three
times. The numerical solution is examined when the shock reaches x = 4.5 at t = 3.38061. For these
computations, the CFL is lowered to the value 0.30.

First, for k = 13, we use 400 grid points, that is effectively 10 points in each wavelength of the generated
entropy wave. The results are shown in Fig. 17 (the mean flow has bee subtracted from the numerical solution).
We can see that on this grid, the CWENO5 scheme calculates the amplified entropy waves quite well, although
their amplitude is slightly attenuated, Fig. 17(a). On a grid of 800 points (20 points per wavelength), Fig. 17(b),
the resolution becomes very good with the CWENO5 scheme. To compare, we produce the numerical results
obtained with 800 grid points, by using the UWENO5 scheme, Fig. 17(c); obviously, this scheme produces
equivalent results. Lastly, Fig. 17(d) and (e) produce numerical results for k = 26, N = 800 and k = 26,



G. Capdeville / Journal of Computational Physics 227 (2008) 2977–3014 3003
N = 1200, respectively. Even if the amplitude of the entropy waves is slightly attenuated behind the shock, the
CWENO5 scheme keeps on giving reasonably good results for 15 points per wavelength, Fig. 17(d).

Example 7 (Propagation of sound waves through a transonic nozzle [16]). The computation of sound propa-
gating through a choked nozzle presents a challenging problem for a shock-capturing scheme. To reduce the
complexity of the problem, but retaining the basic physics and difficulties, this propagation problem is mod-
elled by a one-dimensional acoustic wave transmission problem through a transonic nozzle [16].

In this problem, an acoustic wave is introduced at the nozzle inflow region and the sound wave that travels
downstream through the transonic nozzle and interacts with the shock is to be calculated. The amplitude of
the incoming sound wave is d = 10�5, which is very small compared to the mean values of the flow. The nozzle
flow is modelled by the one-dimensional Euler equations with variable nozzle area:
oU
ot þ

oFðUÞ
ox ¼ � 1

A
dA
dx U0;

U � ½q; qu; qE�t; F � ½qu; qu2 þ p; quH �t; U0 � ½qu; qu2; quH �t:
ð45Þ
The area of the nozzle is
AðxÞ ¼
0:536572� 0:198086� exp �Logð2Þ x

0:6

� �2
� �

; x > 0;

1:0� 0:661514� exp �Logð2Þ x
0:6

� �2
� �

; x < 0:

8><>:

Flow variables are non-dimensionalized by using the upstream values. The velocity scale is a1 (speed of
sound), the length scale is D (diameter of the nozzle) and the density scale is the static density, q1. Then,
the mean flow at the inlet is
½�q; �u; �p�tinlet ¼ ½1;M1; 1=c�t: ð46Þ

The Mach number at the inlet, M1, is 0.2006533 and the pressure at the exit, pexit, is 0.6071752, so that a
shock is formed inside the nozzle. The shock location is then xs = 0.3729.

Just upstream of the shock wave, the Mach number is M1 = 1.465 and downstream, M2 = 0.714. The
pressure ratio (intensity of the shock wave) is then p2/p1 = 2.337.

The incoming acoustic wave, with angular frequency, x = 0.6p, is described as
½q; u; p�tacoust ¼ d� ½1; 1; 1�t � sin x
x

1þM1
� t

� �� �
: ð47Þ
In the present work, the acoustic wave will be computed directly by solving the non-linear governing equations
rather than solving the linearized equations (see [16] for some examples on the linearized problem). This makes
it harder to compute the acoustic waves. The challenge is whether the small amplitude wave can still be cap-
tured in the computation by the CWENO5 scheme. The computational domain is �10 6 x 6 10 and a non-
uniform mesh, refined in the throat region, is used.

To begin, the steady state of the nozzle flow is computed. For the flow variables, the initial conditions are
specified by using the mean exact solution of this problem. At the boundaries, the back-pressure is specified at
the outlet and the total pressure and density are specified at the inlet. The other needed information at both the
inlet and outlet are obtained using a first-order extrapolation from their neighbouring mesh points.

The steady-state solution of (45), obtained using a 251 points non-uniform mesh (Dxmin = 0.10,
Dxmax = 0.49) with CFL = 0.80, is compared with the exact solution, Fig. 18(a). The solution is converged
to machine precision, Fig. 18(b). It can be seen that the flow properties are uniform in most regions, of the
nozzle, but change dramatically near the nozzle throat, Fig. 18(a). Lastly, the shock is captured without any
numerical oscillation. As indicated by the theoretical stability analysis, the stability domain of the CWENO5
is not altered by a strongly varying source-term.

After the steady-state flow-field is computed, the acoustic wave propagation can be simulated using the
same non-linear solver. First, the initial conditions are specified using the steady-state solution previously
calculated, then, at the inlet, the solution (47) is superimposed for the primitive variables.

Numerical solutions of the acoustic pressure at t = 14T are shown in Fig. 19 and compared with the
analytical solution (given in [16]).



Fig. 17. Shock entropy wave interaction. CWENO5 scheme. CFL = 0.30, t = 3.38061 (a) k = 13, N = 400; (b) k = 13, N = 800; (c)
UWENO5: k = 13, N = 800; (d) k = 26,N = 800; (e) k = 26, N = 1200.
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With only 155 grid points, the wave pattern is not correctly captured, Fig. 19(a), while a greatly improved
result is produced using a 251 points non-uniform mesh (Dxmin/Dxmax = 0.11), Fig. 19(b). However, the
amplitude of the acoustic wave at the shock location is lower than that indicated by the analytical solution:
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this is due to the third-order error introduced by the scheme when the WENO procedure modifies the non-
oscillatory weights, right at this place.

In spite of this difficulty, one can note that the profiles of the acoustic pressure both upstream and
downstream the shock location agree very well with the analytical solution, Fig. 19(b).
3.5. The two-dimensional Euler equations

In this section, we illustrate through numerical experiments, the capacity of the CWENO5 algorithm to
deal with two-dimensional problems. For this purpose, we discretize the two-dimensional Euler equations
for an ideal gas.
Fig. 18. Propagation of sound waves through a transonic nozzle. Steady-state solution. CWENO5 scheme. Stretched mesh: Dxmin/
Dxmax � 0.10 CFL = 0.8, N = 251. (a) mean pressure, (b) maximum residual.
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We use a dimension-by-dimension finite volume approach to extend the algorithm described so far. Doing
so, the one-dimensional CWENO5 interpolation, (15), is used in each direction to reconstruct the solution at
the cell interfaces. Then, the numerical fluxes are calculated in each direction. The time-integration remains
ensured by the TVD RK3 algorithm.

Of course, such an approach neglects the cross-derivatives that necessarily appear in a truly multi-dimen-
sional reconstruction. However, our aim is to demonstrate that, even so, the procedure we developed gives
good numerical results for capturing discontinuities that lie oblique to the grid.

To this aim, Riemann problems for two-dimensional gas dynamics are considered, see [18,17,21] for more
details on the physics.

To simplify the problem, all the computations are run on a Cartesian mesh in the (x,y) plane, with
Dx = Dy.
Fig. 19. Propagation of sound waves through a transonic nozzle. Acoustic pressure at t = 14T. Stretched mesh: Dxmin/Dxmax � 0.10
CWENO5 scheme. CFL = 0.8 (a) N = 155, (b) N = 251.
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The time-step is now defined as Dt � CFL�min min Dx
jujþa

� �
;min Dx

jvjþa

� �h i
.

Example 1 (Radially symmetric Riemann problem [21]). This test is defined to check the conservation of radial
symmetry. For this problem, the initial conditions for the Euler equations are set as follows:
Fig. 20
Densit
ðq; u; v; pÞtðx; y; t ¼ 0Þ ¼
ð2; 0; 0; 15Þ if k~xk 6 0:13;

ð1; 0; 0; 1Þ otherwise:

�

Computations are run up to t = 0.13 on a 80 � 80 rectangular grid. The Courant number is set to 0.75. As a
reference solution, a highly resolved solution is computed on a 400 � 400 rectangular mesh. In addition, a sec-
ond-order TVD scheme, defined by the ‘‘Superbee” limiter, is used to check the influence of the reconstruction.

Fig. 20(a) shows contour plots of the density at t = 0.13. In addition, Figs. 20(b) and (c) show 1D cuts along
the y = 0.5 and y = x lines, compared with the ‘‘exact” solution. From these results, the solution appears to be
isotropic, Fig. 20(b), and the radius of curvature of the shock at angles not aligned with grid lines is uniform,
Fig. 20(a). Moreover, one can note the absence of oscillations behind the shock-wave.
. Two-dimension Euler equations. Radially symmetric Riemann problem. 80 � 80 rectangular grid, CFL = 0.75, t = 0.13, (a)
y plot, (b) Cuts at y = 0 and y = 0.5, (c) Comparisons between the CWENO5 and TVD schemes along y = 0.



3008 G. Capdeville / Journal of Computational Physics 227 (2008) 2977–3014
Lastly, Fig. 20(c) gives a comparison between the CWENO5 reconstruction and a formally second-order
TVD reconstruction obtained with the ‘‘Superbee” limiter: one can then appreciate the advantage of using the
CWENO5 reconstruction.

Example 2 (Two-dimensional Riemann problem [17,18]). In the (x,y) plane, we consider the following Rie-
mann problem for the Euler equations:
Fig. 2
Densit
ðq; u; v; pÞtðx; y; t ¼ 0Þ ¼ ðqi; ui; vi; piÞ
t
; i 2 f1; 2; 3; 4g; ð48Þ
where i denotes the ith quadrant.
According to [18], there exist 15 genuinely different admissible configurations for polytropic gas, separated

by the three types of 1D centered waves, namely, rarefaction, shock and contact waves. In this example, we
compute some of these configurations. Consult [17,18] for more details.

All the computations are performed on a uniform Cartesian grid consisting of 400 � 400 points. The
contour levels are selected as in [17] to compare the results. The CFL number used is 0.75. Lastly, we
1. Two-dimension Euler equations. 2-D Riemann problem. Configuration 3. 400 � 400 rectangular grid, CFL = 0.75, t = 0.3.
y contour lines (32 contour lines: 0.16–1.71 step 0.05) (a) CWENO5 scheme, (b) ‘‘Superbee” limiter.
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compare the CWENO5 reconstruction with the second-order TVD scheme used in the preceding
example.

Our numerical examples below show the density contour lines subject to four initial data configurations and
we refer the reader to [17] for a detailed discussion on the wave formation in each of these configurations.

Configuration 3: interaction of four shock waves.
The initial conditions for the 2D Riemann problem (48) are as follows:
Fig. 22
t = 0.2
ðq; u; v; pÞt ¼

ð1:5; 0; 0; 1:5Þt if x > 0; y > 0;

ð0:5323; 1:206; 0; 0:3Þt if x < 0; y > 0;

ð0:138; 1:206; 1:206; 0:029Þt if x < 0; y < 0;

ð0:5323; 0; 1:206; 0:3Þt if x > 0; y < 0:

8>>><>>>:
. Two-dimension Euler equations. Two-dimension Riemann problem. Configuration D. 400 � 400 rectangular grid, CFL = 0.75,
5. Density contour lines (25 contour lines: 0.51 to 0.99 step 0.02) (a) CWENO5 scheme, (b) ‘‘Superbee” limiter.
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Fig. 21(a) shows the numerical results obtained with CWENO5 scheme, at t = 0.3. As one can see, the shock-
waves are well resolved and the solution is symmetric. As in [17], the different types of Mach reflection are
observed and the slip line that rolls up into a vortex along the symmetry line is visible.

In contrast, Fig. 21(b) shows the results obtained with the second-order TVD scheme (‘‘Superbee” limiter),
all the remaining parameters being unchanged. As one can see, the solution is more dissipated by the TVD
scheme, this is especially true along the symmetry line.

Configuration D: interaction of rarefaction and contact waves.
The initial data are
Fig. 23. Two-dimension Euler equations. Two-dimension Riemann problem. Configuration E. 400 � 400 rectangular grid, CFL = 0.75,
t = 0.3. Density contour lines (34 contour lines: 0.55 to 1.21 step 0.02) (a) CWENO5 scheme, (b) ‘‘Superbee” limiter.



Fig. 24
t = 0.2
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ðq; u; v; pÞt ¼

ð0:5197; 0:1; 0:1; 0:4Þt if x > 0; y > 0;

ð1;�0:6259; 0:1; 1Þt if x < 0; y > 0;

ð0:8; 0:1; 0:1; 1Þt if x < 0; y < 0;

ð1; 0:1;�0:6259; 1Þt if x > 0; y < 0:

8>>><>>>:

Fig. 22(a) shows the computed solution at t = 0.25.

The circular shock wave that bounds the subsonic area outside the rarefaction waves is clearly visible. The
high resolution of these results is in close agreement with the corresponding results in [17]. Fig. 22(b) shows the
results obtained with the TVD scheme: the circular shock-wave is more dissipated.

Configuration E: interaction of shock waves and contact discontinuities.
. Two-dimension Euler equations. Two-dimension Riemann problem. Configuration F. 400 � 400 rectangular grid, CFL = 0.75,
5. Density contour lines (30 contour lines: 0.54–1.70 step 0.04) (a) CWENO5 scheme, (b) ‘‘Superbee” limiter.
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The initial data are now the following ones:
ðq; u; v; pÞt ¼

ð1; 0:1; 0; 1Þt if x > 0; y > 0;

ð0:5313; 0:8276; 0; 0:4Þt if x < 0; y > 0;

ð0:8; 0:1; 0; 0:4Þt if x < 0; y < 0;

ð0:5313; 0:1; 0:7276; 0:4Þt if x > 0; y < 0:

8>>><>>>:

Fig. 23(a) shows the computed solution at t = 0.3.

The slip lines which bend inside the subsonic area and end in spirals are clearly visible. Similarly, the oval
shock wave that bounds the subsonic area is well predicted. This solution is in full agreement with [17], except
for the oscillations behind the shock. Fig. 23(b) shows the results obtained with the TVD scheme: the spirals
and the oval shock are more dissipated with such a scheme. The dissipative nature of the TVD scheme helps to
damp the oscillations behind the shock.

Configuration F: interaction of shock waves and contact discontinuities.
The initial conditions are as follows:
ðq; u; v; pÞt ¼

ð0:5313; 0; 0; 0:4Þt if x > 0; y > 0;

ð1; 0:7276; 0; 1Þt if x < 0; y > 0;

ð0:8; 0; 0; 1Þt if x < 0; y < 0;

ð1; 0; 0:7276; 1Þt if x > 0; y < 0:

8>>><>>>:

Fig. 24(a) shows the results computed with CWENO5 reconstruction at t = 0.25. This solution is in close
agreement with [17]. The slip lines that bend and end in spirals are clearly visible; the solution proposed by
the VD scheme is more dissipative, Fig. 24(b).

Overall, our results based on the one-dimensional CWENO5 reconstruction, reveal the same detailed infor-
mation on the variety of wave formations, in complete agreement with the results of Ref. [17]. Comparisons
with a classical second-order TVD scheme indicate that the fine details of each interaction remain better cap-
tured with the CWENO5 reconstruction: clearly, this is the advantage of using a very high-order
reconstruction.

However, one can note that the contact discontinuities are captured in the same way in using either a CWE-
NO5 reconstruction or a TVD scheme.

The numerical results obtained with the second-order TVD scheme are in agreement with those obtained,
for example, by Kurganov and Tadmor [22].

4. Concluding remarks

In this paper, we constructed a new WENO interpolation procedure for 1D hyperbolic conservation laws;
then, we straightforwardly extended this procedure to 2D configurations. This interpolation results from a
convex centred combination of quadratic polynomials. Combined with a third-order TVD Runge–Kutta pro-
cedure for the time-integration, we proved that this procedure generates a fifth-order scheme in smooth
regions and for small CFLs and remains essentially non-oscillatory near discontinuities.

The main advantage of the CWENO5 scheme is its possibility of treating the non-uniform meshes, without
losing either its simplicity or its properties.

In addition, this scheme has some advantageous peculiarities.
Firstly, in the case of systems, it becomes possible to use a simple component-wise reconstruction without

producing the inappropriate oscillations that generally appear with usual high-order schemes. In some cases,
some slight oscillations may appear but they remain less significant than those produced by more classical
component-wise reconstructions. Broadly speaking, the multidimensional extensions of the scheme show
the same numerical behaviour.

Secondly, the numerical stability of the CWENO5 scheme is unaltered if one introduces highly varying
source-terms in the equations; this point is significant, for example, in non-linear aero-acoustics where source
terms must be incorporated into the equations if one wants to model non-linear regions of production of
sound.
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Lastly, the density constitutes a good sensor for the calculation of the smoothness indicators and preserves
the ENO properties of the resulting scheme when one discretizes non-linear systems of equations. Once again,
this result is advantageous since it makes it possible to simplify the reconstruction procedure.

With regard to the formulation of the parameter e, the conclusions seem to be more contrasted. Indeed, this
formulation does not bring anything new compared with the classical choice used in [2], when the solution is
discontinuous. On the other side, when the solution is smooth, formula (27) produces results rather in good
agreement with the theoretical analysis of Section 3: the convergence of the scheme is almost monotone and
does not suffer from the ‘‘super convergence” phenomenon that sometimes appears with the use of a more
classical parameter. For this reason, we think that the idea represented by formula (27) – although still per-
fectible – deserves to be preserved to improve the convergence properties of a WENO procedure. Maybe a
local formulation of e(u) would constitute a solution to improve the accuracy of the method in regions of
smoothness close to a discontinuity.

To conclude, this new high-order scheme makes it possible to compute, with a good degree of accuracy,
multi-scales problems containing discontinuities. Owing to its algorithmic simplicity and its robustness, this
method can be regarded as a good basis for multidimensional extensions. However, preliminary results
obtained in academic 2D configurations show that more work is needed to improve the capture of shock
without generating spurious oscillations: a CWENO multi-dimensional reconstruction that enables to deal
with curvilinear meshes, would possibly be suitable. This point will constitute the future direction of our
work.
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